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Part I

WHAT’S LINEAR ALGEBRA?
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WHAT’S LINEAR ALGEBRA?

▶ "Mathematics is the art of reducing any problem to linear algebra." -William Stein
▶ Linear algebra is one of the only mathematical theories that we understand almost completely
▶ All of math uses linear algebra as a source of examples, proof techniques, etc. Most problems are

solved by reducing to linear algebra (e.g. linear approximation via derivatives)
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SUMMER PLAN

▶ Review of the fundamentals (today): vector spaces, linear maps, bases, products, dual spaces
▶ Tensors: a unified language for multilinear maps
▶ Exterior Products: A powerful construction, using tensors, that allows intrinsic definitions of trace,

determinant, and rank. Motivated geometrically by "area."
▶ Matrix operators: Power series of matrices (e.g. matrix exponential). Derivatives of these power

series.
▶ Canonical forms: Diagonalizability and Jordan canonical form. Allows "reading off" the geometry of a

matrix from the canonical form. Powerful for theory and applications.
▶ Scalar products: Generalizes the dot product in Rn.
▶ Bilinear forms: Bilinear maps V × V → R (or C).
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Part II

VECTOR SPACES
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ABSTRACT VECTOR SPACES

Let k be a field (e.g. R or C).

Definition 0.1

A set V is a vector space over k if

1. V is an abelian group under operation +: there is a zero element 0, addition u + v for u, v ∈ V is
defined, there are inverses −u with u + (−u) = 0, and u + v = v + u (commutativity).

2. Scalar multiplication is defined: for λ ∈ k, v ∈ V, we have λv ∈ V.

3. For all u, v ∈ V and λ, µ ∈ k,

(λ+ µ)v = λv + µv , λ(v + u) = λv + λu, 1v = v , 0v = 0

(distributivity)

Note that the definition is abstract: we don’t explain how addition and multiplication work, we just say
what properties they must satisfy.
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EXAMPLES OF VECTOR SPACES

▶ Rn,Cn,Qn are vector spaces over R,C,Q respectively.
▶ If v ∈ Rn, the set {u ∈ Rn : u · v = 0} is a vector space, the orthogonal complement (· is the usual

dot product).
▶ The set of all real-valued continuous functions on [0, 1], denoted C([0, 1]), is a vector space.
▶ So is {f ∈ C([0, 1]) : f (0) = f (1) = 0}.
▶ Polynomials of degree ≤ d over a field k form a finite-dimensional vector space over k .
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LINEAR INDEPENDENCE AND BASES

Definition 0.2

A tuple of vectors (v1, . . . , vn) is linearly dependent if there exist λ1, . . . , λn ∈ k, not all equal to zero,
such that

λ1v1 + · · ·+ λnvn = 0.

If (v1, . . . , vn) are not linearly dependent, we say they are linearly independent.

Definition 0.3

A vector space is n-dimensional if there exists a linearly independent set of n vectors, but no linearly
independent set of n + 1 vectors. It is infinite-dimensional if there exist n linearly independent vectors
for any n.

▶ Rn is n-dimensional, but C([a, b]) is infinite-dimensional.

Definition 0.4 (Equivalent)

The dimension of V is the longest length of any chain of strictly increasing vector subspaces

V0 ⊊ V1 ⊊ · · · ⊊ Vn
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BASES

Definition 0.5

An (ordered) basis in a vector space V is a tuple (e1, . . . , en) of linearly independent vectors such that
any vector v ∈ V, can be expressed as v =

∑n
k=1 vk ek for some vk ∈ k (i.e. (e1, . . . , en) span V).

The numbers vk are the components of v with respect to (e1, . . . , en).
▶ This definition only works (as written) for finite-dimensional vector spaces. For infinite dimensions,

you will have an infinite basis, but only finite linear combinations are allowed.
▶ A basis is extra data associated to V ! There are many choices of basis for a given vector space.
▶ Equivalent definition: A basis is a choice of isomorphism from V to the "standard" vector space kn,

where n = dimV . If φ : V → kn is the isomorphism, the basis vectors are given by
ei = φ−1((0, . . . , 0, 1, 0, . . . , 0)) with the 1 in the i th place.

Theorem 1

In a finite-dimensional vector space, all bases have equally many vectors (i.e. dimension is a well-defined
integer).

Theorem 2

Every vector space has a basis.
This turns out to be equivalent to the axiom of choice! Think about what a basis of R over Q would look
like.
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Part III

LINEAR MAPS
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LINEAR MAPS BETWEEN VECTOR SPACES

Definition 0.6

A function A : V → W between vector spaces V ,W is linear if for all λ ∈ k and u, v ∈ V,
A(u + λv) = A(u) + λA(v).

▶ If A is a linear map V → V and (ej)j is a basis then there exist Ajk ∈ k (j, k = 1, . . . , n) such that if
v =

∑n
j=1 vjej , then (Av)j =

∑n
k=1 Ajk vk .

▶ By linearity, Av = A(
∑

k=1 vk ek) =
∑

k=1 vk A(ek) so A is determined by where it sends ek .
▶ In basis (ej)j , we can write Aek as Aek =

∑n
j=1 Ajkej .

▶ So Av =
∑n

k=1 vk
∑n

j=1 Ajk ej .
▶ The matrix (Ajk)j,k=1,...,n determines A in the given basis (e1, . . . , en).

The composition of two linear maps A : V → W and B : W → Z is again a linear map BA : V → Z .
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EXAMPLES OF LINEAR MAPS

1. The identity I : V → V given by Iv = v is linear. Its matrix in any basis is the Kronecker delta δij = 1
if i = j , 0 otherwise.

2. Let C1([a, b]) be the space of continuously differentiable real-valued functions of [a, b]. Then the
derivative d/dx : C1([a, b]) → C([a, b]) is a linear map.

3. Solving a differential equation d/dxu(x) = f consists of finding the preimage of f under this linear
map. This is the view of PDE from functional analysis.

4. Similarly, integration f 7→
∫ b

a f defines a linear function C([a, b]) → R.

11 / 24



HOM SPACES

Let Hom(V ,W ) be the set of all linear maps V → W . Then Hom(V ,W ) is a vector space: If λ ∈ k ,
v ∈ V , and A,B ∈ Hom(V ,W ), define

(λA)v = λ(Av)

(A + B)v = Av + Bv

▶ You can check that Hom(V ,W ) is a vector space.
▶ We can also define End(V ) := Hom(V ,V ).
▶ Fact: End(k) ∼= k .
▶ Later, we will see that Hom(V ,W ) ∼= V ∗ ⊗ W , where V ∗ is the dual space.
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Part IV

ISOMORPHISMS
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ISOMORPHISMS

Definition 0.7

Two vector spaces are isomorphic if there exists a bijective linear map between them.

▶ If A : V → W is an isomorphism and (e1, . . . , en) is a basis for V , then (Ae1, . . . ,Aen) is a basis for
W .

Coupled with the fact that a basis for V is equivalent to an isomorphism V → kn, we get:

Theorem 3

Any vector space V of dimension n is isomorphic to the space kn of n-tuples.

Note that this isomorphism depends on the choice of basis! It is not canonical :

Definition 0.8

A linear map V → W is canonically defined or canonical if it’s definition does not depend on the basis
chosen.
V and W are canonically isomorphic if there is a canonically defined isomorphism between the two.
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CANONICAL ISOMORPHISMS

▶ We can construct an isomorphism by choosing a basis, but to show its canonical we must show that
it gives the same values for any other choice of basis.

▶ As a general philosophy, canonically isomorphic vector spaces can be "identified" for all intents and
purposes, while noncanonically isomorphic ones cannot be. Be careful though!

1. V is canonically isomorphic to itself via the identity map. More generally, any λI for 0 ̸= λ ∈ k , gives
a canonical isomorphism.

2. If V is 1-dimensional, the isomorphism End(V ) → k is constructed by noting every element of
End(V ) is multiplication by a scalar. But this is not canonical: it requires a choice of vector
0 ̸= v ∈ V that is mapped on 1 ∈ k .
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Part V

MAKING NEW VECTOR SPACES FROM OLD ONES
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SUMS AND PRODUCTS

Let I be a (possibly infinite) set indexing a collection of vector spaces {Vi}i∈I defined over the same field
k .

Definition 0.9

The direct sum
⊕

i∈I Vi is the set of tuples (vi)i∈I with vi = 0 for all but finitely many i.
The direct product

∏
i∈I Vi is the set of all tuples (vi)i∈I .

▶ We can define addition and scalar multiplication componenentwise for both: λ(vi)i∈I = (λvi)i∈I and
(vi)i∈I + (wi)i∈I = (vi + wi)i∈I . This makes them into vector spaces.

▶ Note that
⊕

i∈I Vi ⊂
∏

i∈I Vi and the two are the same if I is finite.

Exercise: Show that Rn ⊕ Rm is isomorphic to Rn+m, but not canonically.

17 / 24



THE RANK-NULLITY THEOREM

Theorem 4

Let A : V → W be a linear transformation between finite-dimensional vector spaces. Then

dim im A + dim kerA = dimV

If you have taken abstract algebra, this theorem is just a consequence of the first isomorphism theorem:
V/ kerA ∼= im A.
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Part VI

THE DUAL SPACE AND HYPERPLANES
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DUAL SPACE

Definition 0.10

If V is a vector space, the dual vector space V ∗ is defined to be Hom(V , k).
In other words, it is the set of all linear maps V → k (called linear functionals).

1. Integration on C([a, b]) defines a linear functional. So does d
dx |x=a on the space of differentiable

functions.

2. If R2 has coordinates v = (x , y), then linear functionals are f (v) = x − y , g(v) = 2x .
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DUAL BASIS

We now show that there exists an isomorphism V → V ∗

▶ Choose a basis (e1, . . . , en) of V . We claim that the tuple (e1, . . . , en) is a basis of V ∗, called the
dual basis, where we characterize ei by

ei(ej) = δij

▶ They span the space: We have for f ∈ V ∗ and v ∈ V with v =
∑n

k=1 vk ek ,

f (v) = f (
n∑

k=1

vk ek) =
n∑

k=1

vk f (ek) =
n∑

k=1

ek(v)f (ek)

so f =
∑n

k=1 ek f (ek).
▶ They are linearly independent: If

∑n
k=1 λk ek = 0, then acting on ej we get

0 = (
n∑

k=1

λk ek)(ej) = λj

so all the λj are zero.
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DUAL BASIS

How does this look explicitly?
▶ Pick a basis and view elements of V as column vectors. Let’s do this for R3 with the standard basis,

so

v =

v1

v2

v3

 , e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1


▶ Then the dual basis e1, e2, e3 are can be viewed as row vectors:

e1 =
[
1 0 0

]
, e2 =

[
0 1 0

]
, e3 =

[
0 0 1

]
, v =

[
v1 v2 v3

]
since the usual matrix multiplication gives ei · ej = δij

▶ So, after picking a basis, the isomorphism V → V ∗ is given by v 7→ vT , the transpose!
▶ This isomorphism is not canonical.
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A BIT OF GEOMETRY

We are familiar with planes, such as the set {x = 0} ⊂ R3 or {x+2y-z=0} ⊂ R3.

Definition 0.11

The hyperplane annihilated by f ∈ V ∗ is the set {x ∈ V : f (v) = 0} = ker f .

Theorem 5

The hyperplane annihilated by nonzero f ∈ V ∗ has dimension n − 1. (n = dimV).

Proof.

▶ The image of f either has dimension 0 or 1. Since it is nonzero, dim im f = 1.
▶ From the rank-nullity theorem, dimV = dim im f + dim ker f = 1 + dim ker f . So dim ker f = n − 1,

the dimension of the hyperplane.

As an example, the linear functional corresponding to [a1, a2, a3] in the standard basis is the hyperplane
{a1x + a2y + a3z = 0}.
This allows us to generalize our intuition to higher dimensions!
Exercise Let f1, . . . , fm ∈ V ∗. Show that {v ∈ V : fi(v), i = 1, . . . ,m} is a linear subspace of V .
Show that if f1, . . . , fm are linearly independent, then the dimension of that subspace is n − m (where
n = dimV ).
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EXERCISES

1. Show that Rn ⊕ Rm is isomorphic to Rn+m, but not canonically.

2. If V is one-dimensional, show that End(V ) is isomorphic to k , but not canonically.

3. Go on wikipedia and look up the universal properties of ⊕ and ×. Verify that they are true.

4. Construct a canonical isomorphism between V and its double dual V ∗∗, for V finite-dimensional.

5. Let V be the vector space of polynomials in x of degree ≤ d with coefficients in R. Let
(1, x , x2, x3, . . . , x3) be the basis of V . For notational convenience, set ei = x i . Express the
corresponding dual basis ei in terms of the (higher) derivative operator d i

dx i |x=0

6. Let f1, . . . , fm ∈ V ∗. Show that {v ∈ V : fi(v), i = 1, . . . ,m} is a linear subspace of V .
Show that if f1, . . . , fm are linearly independent, then the dimension of that subspace is n − m (where
n = dimV ).
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